Stable Ergodicity for Partially Hyperbolic Attractors with Negative Central Exponents

نویسنده

  • K. BURNS
چکیده

We establish stable ergodicity of diffeomorphisms with partially hyperbolic attractors whose Lyapunov exponents along the central direction are all negative with respect to invariant SRBmeasures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Denseness of ergodicity for a class of partially hyperbolic volume-preserving flows

Let P be the set of C1 partially hyperbolic volume-preserving flows with one dimensional central direction endowed with the C1flow topology. We prove that any X ∈ P can be approximated by an ergodic C2 volume-preserving flow. As a consequence ergodicity is dense in P. MSC 2000: primary 37D30, 37D25; secondary 37A99. keywords: Dominated splitting; Partial hyperbolicity; Volume-preserving flows; ...

متن کامل

Partial Hyperbolicity, Lyapunov Exponents and Stable Ergodicity

We present some results and open problems about stable ergodicity of partially hyperbolic diffeomorphisms with nonzero Lyapunov exponents. The main tool is local ergodicity theory for non-uniformly hyperbolic systems. Dedicated to the great dynamicists David Ruelle and Yakov Sinai on their 65th birthdays

متن کامل

Srb Measures for Partially Hyperbolic Systems Whose Central Direction Is Mostly Contracting

We consider partially hyperbolic diieomorphisms preserving a splitting of the tangent bundle into a strong-unstable subbundle E uu (uniformly expanding) and a subbundle E c , dominated by E uu. We prove that if the central direction E c is mostly contracting for the diieomorphism (negative Lyapunov exponents), then the ergodic Gibbs u-states are the Sinai-Ruelle-Bowen measures, there are nitely...

متن کامل

Lectures on Lyapunov Exponents and Smooth Ergodic Theory

1. Lyapunov Exponents for Differential Equations 2. Abstract Theory of Lyapunov Exponents 3. Regularity of Lyapunov Exponents Associated with Differential Equations 4. Lyapunov Stability Theory 5. The Oseledets Decomposition 6. Dynamical Systems with Nonzero Lyapunov Exponents. Multiplicative Ergodic Theorem 7. Nonuniform Hyperbolicity. Regular Sets 8. Examples of Nonuniformly Hyperbolic System...

متن کامل

On the Work of Dolgopyat on Partial and Nonuniform Hyperbolicity

The paper is a non-technical survey and is aimed to illustrate Dolgopyat’s profound contributions to smooth ergodic theory. I will discuss some of Dolgopyat’s work on partial hyperbolicity and nonuniform hyperbolicity with emphasis on interaction between the two – the class of dynamical systems with mixed hyperbolicity. On the one hand, this includes uniformly partially hyperbolic diffeomorphis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006